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Reduced basis methods are powerful tools that can significantly speed up computationally
expensive analyses in a variety of “many-query” and real-time applications, including de-
sign optimization. Unfortunately, these techniques produce reduced-order models (ROMs)
that are costly to construct and are not always robust in the parameter space. Further-
more, efforts to apply these methods to optimization have almost exclusively relied on
offline sampling procedures, which can exacerbate these problems and even prevent com-
putational cost savings from being realized. Although adaptive sampling techniques have
been recently developed to avoid these drawbacks, their application has been limited to
the optimization of dynamical systems. We therefore present a Compact POD (CPOD)
basis that treats the (possibly high-order) state vector sensitivities as system “snapshots”
and employs a snapshot-weighting scheme to compute a reduced basis. Since sensitivities
directly represent the effect of parameter changes on the system’s physics and can often
be efficiently computed, the proposed method produces an inherently robust, inexpensive
ROM that is well-suited for optimization. We also show that it can be used to extend
adaptive sampling procedures to static systems. To test the validity of the CPOD basis,
we compare it with the typical POD approach on the analysis of a plane elasticity prob-
lem parameterized by shape and material property variables. We find that the proposed
methodology leads to solutions of similar (often better) accuracy, at a lower cost, and using
many fewer reference configurations than the typical procedure.

Nomenclature

a Symmetric, bilinear, coercive, parameterized
operator

c Equality constraint
γ Snapshot weight
γT Taylor expansion weights
γD Configuration distance weight
Γ Diagonal matrix of snapshot weights
d Inequality constraint
δ Relative projection error
δmin, δ̄ Minimum and average δ
∆y Vertial displacement of control node
D Parameter domain
Dr, D̃r Sets of reference configurations
e Error of approximate solution
e‖, e⊥ Component of e in, orthogonal to P(nφ)
er Relative error in energy norm
E Modulus of elasiticity

E Fraction of retained energy in POD basis
f Linear operator
F Finite element force vector
h Domain height
H Hermite subspace
J Objective function
J Reduced Jacobian
K Finite element stiffness matrix
L Domain length
m Order of Compact POD basis
µ Vector of parameters
µi µ at ith reference configuration
µ̄ µ at target configuration
µi ith entry of µ
ν Poisson’s ratio
nec, nic Number of equality, inequality constraints
nµ Number of parameters
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nr Number of reference configurations
ns Number of snapshots
nC(m) Number of snapshots for

Compact POD of order m
nφ Number of retained POD basis vectors
nφ,E nφ as determined by energy criterion
N Dimension of full-order model
ξ Finite element basis function
p Physical parameter
P(nφ) POD subspace of dimension nφ

R Operator defining static equilibrium
ρ Material density
σ̄ Singular value of W̄
Σ̄ Diagonal matrix of singular values σ̄
S Space of trial functions
t Plate thickness
T Subspace for POD optimization problem
u State vector
û POD modal coordinates
u, v Trial, test functions
υ Fraction of retained energy in POD basis
V Subspace used in determining nφ,E
φ POD basis vector
Φ POD basis of implied dimension

Φ(nφ) POD basis of dimension nφ

Φ̄, Ψ̄ Left and right singular vectors of W̄
w Snapshot
W Weighted snapshot matrix
W̄ Transformed snapshot matrix
W̃ (µ) Matrix of unweighted snapshots computed

for parameters µ
ω Configuration distance weighting exponent
Ω Problem domain
∂Ωg Portion of boundary with Dirichlet conditions
Subscripts
Cm Compact POD of order m
POD, s Typical POD basis, same ns as Compact POD
POD, r Typical POD basis, same nr as Compact POD
i, j, k, l Integer-valued indices
Superscripts
h Finite element
Other
·̃ Reduced-order model
(·, ·)E,µ Energy inner product, continuous arguments
(·, ·)K(µ) Energy inner product, discrete arguments
‖ ·‖ E,µ Energy norm, continuous arguments
‖ ·‖ K(µ) Energy norm, discrete arguments

I. Introduction

Reduced basis approximation leads to a class of model-reduction methods that can dramatically decrease
the computational cost of solving large, parameterized systems in one of two situations: the “many-

query” context and the real-time context. The many-query setting arises when the system is solved many
times for various configurations, as occurs in design optimization,1,2 optimal control,3–6 multi-scale simu-
lation,7,8 and uncertainty analysis.9,10 The real-time framework is often desired for routine analysis,11–13
control,14–18 and nondestructive evaluation/parameter estimation,19–21 for example. In these scenarios, re-
duced basis methods employ previously-computed parameter-induced system realizations, or “snapshots,”22

to generate a basis of relatively small dimension. The governing equations are then projected onto the corre-
sponding subspace, resulting in a much smaller system referred to as a reduced-order model (ROM). Proper
Orthogonal Decomposition (POD), which is also known in the literature as Karhunen-Loève expansion and
principal component analysis, is a specific type of reduced basis technique closely connected with the singular
value decomposition (SVD) of a matrix. This method is characterized by its ability to optimally truncate
the basis such that it represents only the most energetic modes contained in the snapshots. POD has gained
widespread attention recently due to this optimality property.

In this work, we consider the design optimization of static systems, which falls in the many-query cate-
gory. To apply reduced basis approximation to this problem, the approach currently taken in the literature
is to adapt an offline-online strategy.1,2 In this approach, the parameter space is first sampled for snapshots
and the reduced basis is computed in the offline phase, and design optimization using the resulting ROM is
carried out in the online phase.a While this strategy is necessary for real-time online computations, it carries
several drawbacks in the many-query context which can prevent desired accuracy and savings in computa-
tional cost from being achieved. Firstly, it suffers from a ‘break-even’ point,2,8, 18,24 which is characterized
by the number of online system and gradient evaluations that are required before computational cost savings
for the overall offline-online procedure are obtained. Namely, if more system solutions are computed in the
offline sampling phase than system and gradient solutions are required online, it is computationally less

aThis is also the most popular approach for the design optimization of dynamical systems, where the sampling phase can
have the broader interpretation of applying a generalized excitation to the system,14,18 or computing multiple snapshots at a
single configuration.4,23
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expensive (and more accurate) to simply optimize using the full-order model (FOM) and bypass reduced
basis approximation entirely.

Secondly, since the offline phase occurs before the online optimization takes place, the sampling pro-
cedure (common approaches include uniform, random, stratified,25 centroidal Voronoi tesselation,26 and
greedy24,27,28 sampling) cannot take the (unknown) optimization trajectory into account. As a result,
snapshots will be computed at points in the parameter space far from the optimizer’s path—a waste of com-
putational resources. This is illustrated in figure 1(a). If we knew the optimization trajectory a priori, we
would cluster the samples around it as shown in figure 1(b) to improve accuracy in our approximation. To

D

D

D

(a) Offline Sampling

D

D

D

(b) “Ideal” Sampling

Figure 1. Sampling for the optimization of static systems. D parameter space, — optimization trajectory, ! initial
parameters, " optimal parameters, ◦ sample parameters.

circumvent this problem, several adaptive sampling procedures have been developed in the optimal control
setting, including Trust Region POD (TRPOD),5 POD for Optimality Systems (OS-POD),6 and others.3,4
These methods update or replace the reduced basis as the optimization algorithm progresses, but assume
that a snapshot ensemble can be computed at a single configuration for a given problem. Although this
assumption holds for dynamical systems where snapshots correspond to the state vector at multiple times or
frequencies, it does not hold for static systems, where only one snapshot (the steady-state solution) can be
obtained for fixed boundary conditions. Thus, these adaptive procedures cannot be applied to static systems
using existing techniques.

Furthermore, reduced basis approximations are, in general, not robust. In the case of a POD basis con-
structed at a single point in the parameter space, the basis is optimal only for this configuration and con-
tains no information about the physics induced by parameter changes. In the context of dynamical systems,
POD subspace interpolation12,13 and the basis updating procedures mentioned above have been successfully
applied to overcome this shortcoming, but their application to static problems is again complicated by the
limitation of one snapshot per configuration. The aforementioned parameter space sampling procedures
address this problem to some degree for static systems, but the resulting basis contains no information per
se about changes in the physics caused by arbitrary parameter variations.

Lastly, the offline phase is very computationally expensive, because each sample requires a reconfiguration
of the system and the computation of a steady-state solution. The former may require a mesh deformation,
which can be particularly expensive in fluids applications, for example. The latter will also be costly, since
a completely new set of governing equations must be solved for each snapshot, thereby precluding the use
of efficient multiple-RHS techniques.

In this work, we present an enhanced POD basis that addresses the above problems and is particularly
well-suited for the design optimization of static systems. In essence, we extend the notion of a Hermite
basis,16 which uses the solutions and gradients (sensitivities) with respect to the parameters as a basis, to
higher order derivatives and develop a snapshot-weighting scheme that allows for an optimal truncation of
the basis. The result is an inexpensive, robust, design-oriented basis that can be easily implemented in
existing gradient-based optimization software. We refer to this method as Compact POD (CPOD). We also
propose an extension of adaptive sampling to the design optimization of static systems, where the CPOD
basis is a critical component.

3 of 21

American Institute of Aeronautics and Astronautics



II. Reduced Order Modeling via Proper Orthogonal Decomposition

In this section, we outline some properties of Proper Orthogonal Decomposition and discuss its application
to model reduction of discretized, static systems.

II.A. POD and the optimal truncation property

POD computes a basis that optimally represents a given set of snapshots. The snapshots typically corre-
spond to solutions (state vector realizations) of the system at various times, frequencies, or configurations.

Assume we have computed a collection of ns snapshots wi ∈ RN , 1 ≤ i ≤ ns, where N is the (large)
number of degrees of freedom in the full-order model (FOM). We would like to compute a truncated basis
Φ (nφ) =

[
φ1, . . . , φnφ

]
∈ RN×nφ with nφ ≤ ns that optimally represents these snapshots. The vectors

φi ∈ RN , 1 ≤ i ≤ nφ can be determined by the following sequence of constrained, weighted least-squares
problems:

φi = arg min
ψ∈Ti

ns∑

j=1

γ2
j ‖wj − (wj , ψ)Θ ψ‖2Θ

Ti ≡ {ψ ∈ RN | ‖ψ‖Θ = 1, (ψ, φk)Θ = 0 ∀k < i}.

(1)

Here, γj ∈ R, 1 ≤ j ≤ ns are snapshot weights, and (·, ·)Θ is a weighted inner product defined on the
Euclidean space RN as (u, v)Θ ≡ uT Θv. The matrix Θ ∈ RN×N is symmetric and positive definite
with a Cholesky decomposition Θ = (Θ1/2)T Θ1/2. The norm induced by this inner product is defined
as ‖u‖Θ ≡

√
uT Θu. Note that (φi, φj)Θ = δij .

Fortunately, this sequence of Θ−orthogonal vectors can be easily computed using the thin SVD.29 To do this,
we first choose weights γj , 1 ≤ j ≤ ns and assemble the weighted snapshot matrix W = [γ1w1, . . . , γnswns ] ∈
RN×ns . Then, we use this matrix in algorithm 1.

Algorithm 1 POD basis computation given W .
1: W̄ ← Θ1/2W
2: W̄ = Φ̄Σ̄Ψ̄T {Compute Thin SVD}
3: Φ (ns)← Θ−1/2Φ̄, where Φ(ns) = [φ1, . . . , φns ]
4: Choose size of truncated basis nφ.
5: Φ (nφ) =

[
φ1, . . . , φnφ

]
{Truncate}

The resulting basis Φ(nφ) is referred to as the POD basis, and it is optimal in the sense of Eq. (1). In
other words, the POD subspace P (nφ) ≡ span{φi, 1 ≤ i ≤ nφ} minimizes the weighted sum of squares of
the normed projection errors of the snapshots onto a subspace of dimension nφ. In fact, this error can be
computed directly from step 2 of algorithm 1 as

ns∑

j=1

γ2
j ‖wj −

nφ∑

i=1

(wj , φi)Θ φi‖2Θ =
ns∑

k=nφ+1

σ̄2
k. (2)

Here, σ̄k is the kth diagonal entry of Σ̄ (the kth largest singular value of W̄ ). This error can be considered
the “energy” of the snapshots omitted by the POD basis. We therefore define the relative energy retained
by the basis as

E
(
Σ̄, nφ

)
≡

nφ∑
i=1

σ̄2
i

ns∑
j=1

σ̄2
j

. (3)
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Often, we choose nφ in step 4 such that E
(
Σ̄, nφ

)
is greater than some threshold. Setting υ ∈ [0, 1] to the

fraction of total energy we would like the reduced basis to retain, we can choose nφ = nφ,E
(
Σ̄, υ

)
, where

nφ,E
(
Σ̄, υ

)
≡ min

n∈V(Σ̄,υ)
n

V
(
Σ̄, υ

)
≡ {n ∈ {1, 2, . . . , ns} | E

(
Σ̄, n

)
≥ υ}.

(4)

Thus, nφ,E
(
Σ̄, υ

)
is the smallest dimension for which the relative energy retained by the POD basis exceeds

some fraction υ. Typically, υ ∈ [0.9, 1).

II.B. Galerkin projection

Since we are focusing on static systems, consider the system of equations

R (u (µ) ;µ) = 0 (5)

corresponding to the full-order model of a (general) parameterized, discretized, static system. Here, the
state vector u (µ) ∈ RN corresponds to the full-order solution, whose dependence on the system parameters
µ =

(
µ1, . . . , µnµ

)
∈ D ⊂ Rnµ is enforced by the operator R : RN ×D → RN through Eq. (5). The closed,

bounded parameter domain is denoted by D. To reduce the system to dimension nφ - N , we project Eq. (5)
onto the POD subspace P (nφ) via Galerkin projection to obtain a smaller system of equations associated
with the reduced-order model:

ΦTR (Φû;µ) = 0. (6)

If R represents a nonlinear operator in u, we can solve Eq. (6) by Newton’s method (for example) given a
configuration (represented by µ) as

[
ΦT ∂R

∂u

(
Φû(k);µ

)
Φ

]
δû(k) = −ΦTR

(
Φû(k);µ

)

û(k+1) = û(k) + δû(k),

(7)

where û(k) ∈ Rnφ are the reduced coordinates at iteration k, and the bracketed quantity J
(
û(k),Φ,µ

)
≡[

ΦT ∂R
∂u

(
Φû(k);µ

)
Φ

]
with J : Rnφ × RN×nφ ×D → Rnφ×nφ is the reduced Jacobian.

If R represents a linear operator in u, we can solve Eq. (6) in a single step:
[
ΦT ∂R

∂u
(µ) Φ

]
û = ΦTR (0;µ) . (8)

In either case, an approximate solution can be recovered (with û = û(K+1) from the final iteration in the
nonlinear case) by

ũ (Φ,µ) = Φû. (9)

By construction, ũ (Φ,µ) ∈ P (nφ), which clearly limits the accuracy of our approximate solution. We can
define the error of this approximation as

e (Φ,µ) = u (µ)− ũ (Φ,µ) . (10)

This can be decomposed into orthogonal components:30

e (Φ,µ) = e‖ (Φ,µ) + e⊥ (Φ,µ) (11)

e‖ (Φ,µ) =
nφ∑

i=1

(
φi, u (µ)

)
Θ
φi − ũ (Φ,µ) (12)

e⊥ (Φ,µ) = u (µ)−
nφ∑

i=1

(
φi, u (µ)

)
Θ
φi. (13)
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Note that e‖ (Φ,µ) ∈ P (nφ) and e⊥ (Φ,µ) ⊥ P (nφ) by construction. We therefore seek a basis Φ that
minimizes the projection error of the full-order solution onto its subspace

(
small e⊥(Φ,µ)

)
and a solution

method that minimizes the error between the approximate solution and the projection of the full-order
solution onto this subspace

(
small e‖(Φ,µ)

)
. By comparing Eqs. (1) and (13), we see that the POD basis

meets the first of these objectives, since it minimizes a weighted sum of squares of ‖e⊥
(
Φ,µj

)
‖Θ when the

snapshots correspond to the state vector at various configurations
(
wj = u

(
µj

)
, 1 ≤ j ≤ ns

)
.

III. Compact POD

We now present the development of the Compact POD basis, which we show is well-suited for the design
optimization of static systems.

III.A. Hermite subspace

The Hermite subspace was introduced in Ref. [16] as a generalization of the Taylor subspace31,32 in the con-
text of optimally controlling a fluid system in steady-state using a single parameter (the Reynolds number).
This method uses the subspace spanned by the solution u and its first-order derivative (sensitivity) with
respect to a single parameter µ at nr distinct parameter values to generate a ROM via Galerkin projection.
Specifically, the Hermite subspace is defined as

H ≡ span{u
(
µi

)
,
du

dµ

(
µi

)
, 1 ≤ i ≤ nr}. (14)

In spite of the promising resultsb presented in Ref. [16], this method has received little attention in the liter-
ature. This is likely due to the pervasiveness of dynamical systems in controls applications and a limitation
of the method—it does not allow for optimal truncation in a straightforward manner.

To illustrate the second point, define the snapshot matrix in the obvious way as

W =
[
u

(
µ1

)
,
du

dµ

(
µ1

)
, . . . , u (µnr ) ,

du

dµ
(µnr )

]
, (15)

where ns = 2nr. If we use Eq. (15) in algorithm 1, the resulting POD basis will be essentially meaningless.
This is because the magnitude of the snapshots corresponding to the sensitivities can be arbitrarily changed
by scaling the parameter µ ← αµ by any α ∈ R. Since the truncated POD basis is very sensitive to the
magnitude of the snapshots

(
via the inner product in Eq. (1)

)
, we obtain the following results for nφ = nr:

lim
α→0

P (nr) = span{u
(
µi

)
, 1 ≤ i ≤ nr},

lim
α→∞

P (nr) = span{du

dµ

(
µi

)
, 1 ≤ i ≤ nr}.

(16)

Thus, the Hermite snapshot matrix in Eq. (15) produces a POD subspace that is entirely dependent on an
arbitrary scaling factor. So, in its existing form, we cannot employ POD-based truncation with the Hermite
subspace and we must use H of (full) dimension ns for model reduction. This is a significant drawback, since
POD typically enables the subspace spanned by all snapshots to be reduced to dimension nφ - ns in an
optimal sense.

We therefore proceed by proposing a method that improves upon the Hermite subspace. First, we generalize
the Hermite subspace approach to exploit higher-order sensitivities. Next, we introduce a snapshot-weighting
scheme that enables the computation of a POD basis that can be meaningfully truncated. We refer to the
resulting basis as the Compact POD (CPOD) basis. We also outline opportunities for efficiently computing
the CPOD snapshots and use CPOD to extend adaptive sampling procedures to the optimization of static
systems.

bThe authors found the Hermite subspace to produce more accurate results using fewer reference configurations than the
Lagrange subspace, which uses state vector solutions as basis vectors.
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III.B. Taylor expansion weights

To motivate the first component of our weighting scheme, consider an arbitrary number of parameters nµ, a
single reference configuration (nr = 1) defined by µ =

(
µ1, . . . , µnµ

)
∈ D where the solution and sensitivities

to order m have been computed, and a target configuration defined by µ̄ =
(
µ̄1, . . . , µ̄nµ

)
∈ D. This target

can be given, for example, by the next iteration in an optimization algorithm, and it should be near the point
in D where we will compute an approximate solution. Treating the solution and sensitivities as snapshots,
we assemble the weighted snapshot matrix W as

W̃ (µ, m) ≡
[
w̃1(µ), . . . , w̃nC(m)(µ)

]
(17)

w̃j (µ) ≡






u(µ), j = 1
∂u

∂µj−1
(µ), 2 ≤ j ≤ nC(1)

∂2u
∂µk∂µl

(µ), nC(1) + 1 ≤ j ≤ nC(2), 1 ≤ k ≤ l ≤ nµ

...
...

(18)

Γ(µ, µ̄, m) = diag
(
γj (µ, µ̄)

)
(19)

W = W̃ (µ, m)Γ(µ, µ̄, m), (20)

where nC(m) is the number of (unique) snapshots collected at one configuration when sensitivities to order
m are computed:

nC (m) =






1, m = 0

nµ + 1, m = 1
1
2n2

µ + 3
2nµ + 1, m = 2

...
...

(21)

Before computing the POD basis via algorithm 1, we must determine appropriate weights γj , 1 ≤ j ≤ nC(m).
Note that weights of unity can lead to a meaningless truncated basis (see Section III.A).

Assuming that the state vector u : D → RN is m + 1 times continuously differentiable, we can use the
Taylor expansion of the state vector about µ to write:

u (µ̄) =u (µ) +
nµ∑

i=1

(µ̄i − µi)
∂u

∂µi
(µ) +

nµ∑

i=1

nµ∑

j=1

1
2

(µ̄i − µi) (µ̄j − µj)
∂2u

∂µi∂µj
(µ)

+ · · ·+
nµ∑

i=1

· · ·
nµ∑

j=1

1
m!

(µ̄i − µi) · · · (µ̄j − µj)
∂mu

∂µi · · · ∂µj
(µ) +O

(
‖µ̄− µ‖m+1

2

)
.

(22)

The snapshot weights required to recover u (µ̄) to order m + 1 are apparent from Eq. (22):

γTj (µ, µ̄) ≡






1, j = 1

(µ̄j−1 − µj−1) , 2 ≤ j ≤ nC(1)
(
1− 1

2δkl

)
(µ̄k − µk) (µ̄l − µl) , nC(1) + 1 ≤ j ≤ nC(2), 1 ≤ k ≤ l ≤ nµ

...
...

(23)

Using these Taylor expansion weights γj (µ, µ̄) = γTj (µ, µ̄) in Eqs. (17)–(20) and algorithm 1, we can com-
pute a POD basis. This basis is optimally truncated in the sense of the (m + 1)-order Taylor approximation
of the solution at µ̄ given the data at µ.

III.C. Configuration distance weights

At first glance, the extension of the results of Section III.B to multiple reference configurations (nr > 1)
seems straightforward, since we can simply combine the weighted snapshot matrices of Eq. (20) from each
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reference configuration:

W =
[
W̃ (µ1, m)Γ(µ1, µ̄, m), . . . , W̃ (µnr , m)Γ(µnr , µ̄, m)

]
, (24)

where the diagonal entries of Γ(µi, µ̄, m) are defined by Eq. (23). The POD basis can then be computed
using this weighted snapshot matrix in algorithm 1. Unfortunately, this approach can lead to excessive
weighting of snapshots computed at configurations “far” from the target configuration.

To demonstrate this, consider a problem with a single parameter (nµ = 1) and two reference configura-
tions (nr = 2). If, for example, µ1 = 0.1µ̄ and µ2 = 0.8µ̄, the weighted snapshot matrix of Eq. (24) would
be

W =
[
u

(
µ1

)
, 0.9µ̄

du

dµ

(
µ1

)
, u

(
µ2

)
, 0.2µ̄

du

dµ

(
µ2

)]
. (25)

Even though the second configuration is closer to the target configuration in the parameter space D, its
sensitivity snapshot is given a smaller weight than that of the more distant configuration. As a result, the
truncated POD basis computed using this matrix in algorithm 1 better represents the snapshots from the
more distant (and therefore less relevant) configuration.

To remedy this, we introduce a configuration distance weight. Since D ⊂ Rnµ we can use the Euclidean
,2 norm to define distances between configurations.c To give smaller weights to snapshots computed at more
distant points, we define the configuration distance weight as

γD
(
µi, µ̄

)
≡ ‖µ̄− µi‖−ω

2 , (26)

where ω ∈ R+ is a constant determined from numerical experiments.

We now define the Compact POD snapshot matrix of order m WCm as

WCm (Dr, µ̄) ≡
[
W̃ (µ1, m)ΓCm(µ1, µ̄), . . . , W̃ (µnr , m)ΓCm(µnr , µ̄)

]
(27)

ΓCm(µi, µ̄) ≡ γD
(
µi, µ̄

)
diag

(
γTj

(
µi, µ̄

))
, (28)

where Dr = {µ1, . . . ,µnr} ⊂D is the set of reference configurations. To illustrate the utility of the
configuration distance weights, we apply Eqs. (27)–(28) to the previous example with ω = 2 in Eq. (26).
This results in the following Compact POD snapshot matrix:

WC1
(
{µ1, µ2}, µ̄

)
=

[
1.23
(µ̄)2

u
(
µ1

)
,
1.11
µ̄

du

dµ

(
µ1

)
,

25
(µ̄)2

u
(
µ2

)
,
5
µ̄

du

dµ

(
µ2

)]
. (29)

Since the second configuration is closer to the target, it is apparent that the distance weights cause CPOD
to more heavily weight snapshots from nearer configurations as desired.

Thus, the matrix WCm (Dr, µ̄) can be used in algorithm 1 to compute the Compact POD basis of order
m, which we denote by ΦCm . This basis is optimal in the sense of the (m + 1)-order Taylor reconstruction
of the solution at the target with a correction made for configuration distances.

We now outline some of the advantages of CPOD. As noted previously, one shortcoming of reduced ba-
sis approximations is that the reduced basis is not generally robust with respect to parameter changes.
However, since the CPOD basis is constructed from the sensitivities, which directly represent changes in
the solution due to parameter variations, it is naturally more robust in the parameter space. Furthermore,
the CPOD basis is optimal with respect to the reconstructed solution at a target configuration, whereas the
typical POD basis is optimal only at the reference configuration(s). Thus, we expect CPOD to provide a
more accurate approximate solution at the target than standard POD.

Furthermore, CPOD extracts more information at each reference configuration than the typical approach.
cThis distance measure is meaningful only if the parameters are similarly scaled.
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Thus, we expect CPOD to require many fewer reference configurations to obtain a desired level of accuracy
in the approximate solution. A similar effect is observed when compact differencing schemes are used to
approximate spatial derivatives.

We also note that the CPOD basis of order zero with ω = 0 in Eq. (26) is equivalent to the typical POD
basis. Thus, the standard POD method can be considered a special case of CPOD.

III.D. Computational cost savings

Beyond the theoretical appeal of the Compact POD method, there is also a practical advantage in terms of
computational cost. Namely, the sensitivities are often inexpensive to compute because fast multiple-RHS
techniques can be used to solve the (discrete, analytical) sensitivity equations.

Again, we consider the static system Eq. (5). If R represents a nonlinear operator, we obtain the fol-
lowing first- and second-order sensitivity equations by enforcing Eq. (5) for arbitrary perturbations in the
parameters:

∂R
∂u

(u (µ) ;µ)
∂u

∂µj
(µ) =− ∂R

∂µj
(u (µ) ;µ) , 1 ≤ j ≤ nµ (30)

∂R
∂u

(u (µ) ;µ)
∂2u

∂µk∂µl
(µ) =− ∂2R

∂µk∂µl
(u (µ) ;µ)− ∂2R

∂u∂µk
(u (µ) ;µ)

∂u

∂µl
(µ)

− ∂2R
∂u∂µl

(u (µ) ;µ)
∂u

∂µk
(µ) , 1 ≤ k, l ≤ nµ

(31)

Eqs. (30)–(31) can be solved by multiple-RHS methods because the matrix ∂R
∂u (u (µ) ;µ) is independent of

parameter indices j, k, and l. Thus, in order to compute the sensitivities ∂u
∂µj

, 1 ≤ j ≤ nµ and ∂2u
∂µk∂µl

,
1 ≤ k ≤ l ≤ nµ, we must only compute the “pseudo-loads” appearing on the RHS and solve repeatedly with
the same matrix.

For linear R, the sensitivity equations are

∂R
∂u

(µ)
∂u

∂µj
(µ) =− ∂R

∂µj
(u (µ) ;µ) , 1 ≤ j ≤ nµ (32)

∂R
∂u

(µ)
∂2u

∂µk∂µl
(µ) =− ∂2R

∂µk∂µl
(u (µ) ;µ)− ∂2R

∂u∂µk
(µ)

∂u

∂µl
(µ)

− ∂2R
∂u∂µl

(µ)
∂u

∂µk
(µ) , 1 ≤ k, l ≤ nµ

(33)

Again, we can solve Eqs. (32)–(33) by multiple-RHS methods. Note that we can also compute even higher-
order sensitivities using multiple-RHS techniques, since the same matrix appears on the LHS for sensitivity
equations of all orders.

The best multiple-RHS method to use depends on the bandedness of the matrix at hand. For matrices
with small bandwidth, the matrix factorization can be computed once and then be reused for each RHS by
performing forward- and back-substitution. For systems not meeting this criteria, multiple-RHS methods
based on the reuse of Krylov subspaces33 can be used. Here, the iterative method’s objective function is first
(cheaply) minimized in the Krylov subspace K generated from solving previous systems. Next, the function
is minimized over the complement of this subspace by enforcing orthogonality of the search directions to
K. As a result, solving the linear system with each additional RHS is computationally less expensive than
solving the original system.

Thus, Compact POD with multiple-RHS solution methods provides an advantage over the typical POD
approach in two settings. For a fixed number of reference configurations nr, we can compute nC(m) − 1
more snapshots at a slightly increased cost. If we instead desire a specific number of snapshots ns, we can
compute them at a reduced cost using fewer reference configurations and multiple-RHS methods. This ad-
vantage is particularly dramatic when applied to nonlinear static systems, since solving for the solution itself
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requires a nonlinear system solution strategy such as Newton’s method, whereas solving for the sensitivity
requires the solution of only a single linear system (with a multiple RHS method).

Finally, we note that if the cost of computing the pseudo-loads34 appearing on the RHS of Eqs. (30)–
(33) overrides the savings achieved by multiple-RHS methods, we may revert to finite difference methods to
compute the sensitivities. In this case, the cost of CPOD is comparable to that of the typical POD approach
if low-order differences (e.g. one-sided difference for first derivatives, three-point centered difference for sec-
ond derivatives) are used. Thus, computing snapshots for CPOD is at least as inexpensive as doing so using
the typical approach.

III.E. Integration with optimization and adaptive sampling

We now turn to the integration of the Compact POD method with gradient-based optimization algorithms.
As mentioned in Section I, the optimization of static systems has been limited to offline-online decomposition
procedures, where the dominant cost is incurred in the offline snapshot generation phase. By incorporating
Compact POD within this framework, we can decrease the cost of the offline phase by exploiting multiple-
RHS solution methods (see Section III.D).

However, we would like to avoid offline-online procedures if possible due to its innate drawbacks. These
include the aforementioned ‘break-even’ point and the lack of correlation between the reference configura-
tions and the optimization trajectory (see figure 1). As previously discussed, strategies that employ adaptive
sampling and basis updating techniques avoid these shortcomings, but require the possibility of computing
multiple snapshots at a single configuration for fixed boundary conditions. Since CPOD enables this for
static systems, we can now use these adaptive methodologies in this context.

As an example of this, we consider an extension of OS-POD6 to the optimization of static systems via
the CPOD basis. Consider the following design optimization problem:

minimize
u,µ

J (u,µ)

subject to ci(u,µ) = 0, 1 ≤ i ≤ nec

dj (u,µ) ≥ 0, 1 ≤ j ≤ nic

R (u;µ) = 0.

(34)

Here, J : RN × D → R is the objective function to indicate system performance, ci : RN × D → R and
dj : RN × D → R represent constraints, and R is associated with the governing equations (5). If the ob-
jective function and constraints are continuously differentiable in u and µ, we can use any of a variety of
gradient-based optimization algorithms35 to solve problem (34).

We proceed by introducing reduced basis approximation in problem (34):

minimize
ũ,µ

J (ũ,µ)

subject to ci(ũ,µ) = 0, 1 ≤ i ≤ nec

dj (ũ,µ) ≥ 0, 1 ≤ j ≤ nic

ΦTR (Φû;µ) = 0
ũ = Φû.

(35)

Problem (35) does not specify how Φ is computed. The direct extension of OS-POD to static systems would
choose Φ to be the (typical) POD basis using only the full-order solution u(µ) as a snapshot. However, this
would produce a reduced basis of dimension one, which is too small to be practical.
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Instead, we choose the CPOD basis of order one, which results in the following problem:

minimize
ũ,µ

J (ũ,µ)

subject to ci(ũ,µ) = 0, 1 ≤ i ≤ nec

dj (ũ,µ) ≥ 0, 1 ≤ j ≤ nic

ΦTR (Φû;µ) = 0
ũ = Φû

R (u;µ) = 0
∂R
∂u

(u;µ)
∂u

∂µj
= − ∂R

∂µj
(u;µ) , 1 ≤ j ≤ nµ

Φ =Φ C1 (nφ,E) by WC1 (µ,µ) in algorithm 1,with ω = 0 in Eq. (26).

(36)

Algorithm 2 can be used to solve problem (36). The figure contains a graphical representation of this imple-

Algorithm 2 Extension of OS-POD to static systems with CPOD.
1: n← 1 and choose initial parameters µ1 ∈ D.
2: Compute u(µn), ∂u

∂µj
(µn), 1 ≤ j ≤ nµ.

3: Use u(µn), ∂u
∂µj

(µn), 1 ≤ j ≤ nµ in a single gradient step of problem (34) to compute intermediate
parameters µ̄.

4: Compute u(µ̄). If u(µ̄) and µ̄ satisfy optimality conditions for problem (34), stop.
5: Define ŴC1({µn, µ̄}, µ̄) ≡ [WC1(µn, µ̄), u(µ̄)] where WC1 is computed with ω = 0 in Eq. (26). Compute

ΦC1(nφ,E) by using ŴC1({µn, µ̄}, µ̄) in algorithm 1.
6: Solve problem (35) with Φ = ΦC1(nφ,E) using a gradient-based optimization algorithm.
7: n← n + 1, return to step 2.

mentation.

D

D

D

Figure 2. Progression of Algorithm 2. D parameter space, — optimization trajectory (FOM), ··· optimization trajectory
(ROM), ! initial parameters, " optimal parameters, • sample parameters (solution and sensitivities computed), ◦ sample
parameters (only solution computed).

This algorithm illustrates a major advantage of using the CPOD basis in adaptive sampling strategies
for optimization: the full-order solutions serve a dual purpose. Namely, these solutions both advance the
optimization trajectory and are used to compute the reduced basis. This is apparent in algorithm 2, where
the full-order solutions computed in step 2 advance the convergence of the optimal solution via the gradient
step in step 3 and are used again to compute the CPOD basis in step 5. This is in contrast to OS-POD as
presented in Ref. [6], where the full-order solutions computed at µn are only used to calculate a gradient
step for problem (34) and do not contribute to the computation of the reduced basis. Thus, the inclusion
of the CPOD basis in the proposed extension of this method allows us to more fully exploit the expensive
full-order computations.
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We also note that when nec + nic + 1 > nµ, the direct method should be used for sensitivity analysis when
solving problem (34). In this case, problem (36) is a particularly well-suited surrogate problem, because
steps 2–4 of algorithm 2 are identical to steps taken in any implementation to solve problem (34).

IV. Example

Here, we apply the Compact POD basis to the analysis of a parameterized plate in plane stress to compare
its quality with that of the standard POD basis.

IV.A. Finite element model

We consider a parameterized, rectangular, cantilevered plate in plane stress with a uniformly distributed
load. The base configuration with µi = 0, 1 ≤ i ≤ nµ is shown in figure 3. The base domain is of (dimen-

Ω

∂Ωg

x
y

L

h

E, ν, t

L

E, ν, t

1 2 3 4

5 6 7 8

Figure 3. Domain of base configuration.

sionless) size L = 40, h = 20, and in-plane thickness t = 0.11. The base material of the plate is characterized
by the modulus of elasticity E = 1 × 105, Poisson’s ratio ν = 0.3, and material density ρ = 1.0. The total
magnitude of the distributed load is 1000.

The standard weak form of the problem describing the static displacement field of the parameterized structure
with homogeneous Dirichlet boundary conditions is: given µ ∈ D, find u ∈ S

(
Ω (µ)

)
satisfying

a(u, v;µ) = f(v), ∀v ∈ S. (37)

Here, the space of trial functions is

S
(
Ω (µ)

)
≡ {u ∈

(
H1

(
Ω (µ)

))2
| u|∂Ωg = 0}, (38)

where H1
(
Ω (µ)

)
is the Hilbert space

H1 (Ω) ≡ {u ∈ L2 (Ω) | ∇u ∈
(
L2 (Ω)

)2}, (39)

and L2 (Ω) is the space of square integrable functions over the domain. a (·, ·;µ) : S×S → R is a symmetric,
bilinear, coercive form and represents the stiffness of the plate. The linear form f : S → R characterizes
the (parameter-independent) distributed load. Due to the properties of a(·, ·;µ), we can define the standard
energy inner product and norm as (u, v)E,µ ≡ a(u, v;µ) and ‖u‖E,µ ≡

√
a(u, u;µ) respectively.

We introduce the finite element discretization characterized by a finite set of basis functions ξi ∈ S, 1 ≤ i ≤ N
and subspace Sh ≡ span{ξi, 1 ≤ i ≤ N} ⊂ S. When we choose to solve Eq. (37) over Sh, the problem be-
comes: given µ ∈ D, find uh ∈ Sh

(
Ω (µ)

)
satisfying

a(uh, vh;µ) = f(vh), ∀vh ∈ Sh. (40)

We implement this discretization via a mesh consisting of 2048 quadrilateral elements with linear shape
functions, two degrees of freedom (translational displacements) per node, and unit aspect ratio. This results
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in N = 4224 and a relative (approximate) error in the energy norm of the finite element solution uh of 4.0%,
which is accurate enough for our purposes.d The matrix-vector representation of the discrete weak form in
Eq. (40) is

K (µ) u (µ) = F, (41)

where K : D → RN×N and F ∈ RN are defined by Kij(µ) = a(ξi; ξj ;µ) and Fi = f(ξi). The finite element
solution on Ω (µ) can be recovered from the state vector coordinates u (µ) = [u1 (µ) , . . . , uN (µ)]T ∈ RN by

uh
(
u (µ)

)
=

N∑

i=1

ui (µ) ξi. (42)

Note that we can equivalently write the energy inner product and norm in terms of the state vector as
(u, v)K(µ) =

(
u(u), v(v)

)
E,µ

and ‖u‖K(µ) = ‖u(u)‖E,µ, where

(u, v)K(µ) ≡ uT K(µ)v (43)

‖u‖K(µ) ≡
√

uT K(µ)u. (44)

IV.B. Design model

We now parameterize the structure using eleven variables (nµ = 11) representing planform shape, thickness,
and material property changes.

To implement the shape parameters, we use the geometric modeler SDESIGN, developed at the Univer-
sity of Colorado at Boulder by Maute and co-workers. This package uses the “design element” concept to
smoothly deform a given mesh via control node displacements.37 Thus, these displacements define the shape
parameters. To create the design model shown in figure 4, we construct a design box (cuboid) around the
finite element mesh and define eight control nodes.e We specify the top and bottom edges to deform as cubic
Bézier splines, and the left and right edges to deform linearly based on control node displacements. Using

Ω

∂Ωg

x
y

L

h

E, ν, t

L

E, ν, t

1 2 3 4

5 6 7 8

Figure 4. Design model. Control nodes shown in red.

this environment, we define nine shape parameters: the vertical displacement of each control node and the
length L of the plate.

We also treat the thickness t and Poisson’s ratio ν as parameters. The eleven physical parameters pi,
1 ≤ i ≤ nµ and their bounds pi,lb and pi,ub, 1 ≤ i ≤ nµ are listed in table 1. To ensure reasonable scaling,
we define the system parameters from the physical parameters via the affine mapping

µi (pi) =
2

pi,ub − pi,lb
(pi − pi,0) , i = 1, . . . , nµ. (45)

Since pi,0 = 1
2 (pi,ub − pi,lb), we have µi ∈ [−1, 1], i = 1, . . . , nµ. This gives D = [−1, 1]nµ .

dThis was determined by h−extension using the procedure in Ref. [36].
eAlthough the design box was three-dimensional, it was constructed symmetrically and thus can be considered a 2-D plane.
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i 1 2 3 4 5 6 7 8 9 10 11
Definition ∆y1 ∆y2 ∆y3 ∆y4 ∆y5 ∆y6 ∆y7 ∆y8 L t ν

pi,0 0 0 0 0 0 0 0 0 40 0.11 0.3
pi,lb -5 -5 -5 -5 -5 -5 -5 -5 20 0.06 0.2
pi,ub 5 5 5 5 5 5 5 5 60 0.16 0.4

Table 1. Physical system parameters pi.

IV.C. ROM construction via Galerkin projection

In order to construct a ROM for this problem, we use a basis Φ =
[
φ1, . . . , φnφ

]
∈ RN×nφ for the state vector

u such that S̃ (Ω,Φ) ≡ span{
∑N

i=1 ξiφj,i, 1 ≤ j ≤ nφ} ⊂S h ⊂ S and project Eq. (40) onto S̃ via Galerkin
projection. This results in the following weak form: given µ ∈ D, find ũ ∈ S̃ (Ω (µ) ,Φ) satisfying

a(ũ, ṽ;µ) = f (ṽ) , ∀ṽ ∈ S̃. (46)

This problem corresponds directly to projecting Eq. (41) in the following way:

ΦT K(µ)Φû = ΦT F (47)
ũ (Φ,µ) = Φû. (48)

Note that Eqs. (47)–(48) correspond to the Galerkin projection of a general linear system as in Eqs. (8)–(9).

Since S̃ ⊂ Sh, we can use Eq. (40) in Eq. (46) and the definition of the energy inner product to obtain

(uh − ũ, ṽ)E,µ = 0, ∀ṽ ∈ S̃. (49)

The corresponding discrete form is

(u− ũ, φi)K(µ) = 0, i = 1, . . . , nφ, (50)

where uh = uh(u) and ũ = ũ(ũ)
(
see Eq. (42)

)
. Since ũ ∈ span{φi, 1 ≤ i ≤ nφ}, we can rewrite Eq. (12) for

the error of the approximate solution in this space as

e‖ =
nφ∑

i=1

(u− ũ, φi)Θ φi. (51)

By comparing Eqs. (50) and (51), we see that by choosing Θ = K(µ), our approximate solution has e‖ = 0
and therefore e = e⊥ due to this “best approximation property” of the finite element method in the energy
norm. This choice is also amenable to the POD framework because the POD basis is constructed with the
aim of minimizing the projection error e⊥, which becomes the total error for Θ = K(µ). Additionally, we
have found that using Θ = K(µ) leads to a better correlation between the retained energy in Eq. (3) and the
accuracy of approximate solution than for the choice Θ = I.f Therefore, we set Θ = K(µ) for our numerical
experiments.

IV.D. Numerical procedure

We now present the numerical procedure to test the validity of the Compact POD method. We compare
the approximate solutions obtained by solving Eqs. (47)–(48) with three different bases: the CPOD basis of
order one (ΦC1), the typical POD basis using both the same number of reference configurations (ΦPOD,r) as
CPOD, and the typical POD basis employing the same number of snapshots (ΦPOD,s) as CPOD.

We first define a set of nr randomly-chosen reference configurations Dr = {µ1, . . . ,µnr} ⊂D at which
we compute the solution and sensitivities. We then form unweighted snapshot matrices for the CPOD ba-
sis W̃ (µ, 1), ∀µ ∈ Dr via Eq. (17). Next, we compute the untruncated basis ΦPOD,r by using WPOD,r =

fSimilar results were found in Ref. [38], where the H1(Ω) inner product, which utilizes higher-order information like the
energy norm, provided a better correlation than the L2(Ω) inner product.
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[
u

(
µ1

)
, . . . , u (µnr )

]
in steps 1–3 of algorithm 1. Note that this results in nrnC(1) = nr (nµ + 1) snapshots

for the CPOD approach, and nr snapshots for the POD approach using the same nr configurations.

To compute ΦPOD,s, we require nrnµ more reference configurations. We therefore define an additional
set of configurations D̃r = {µnr+1, . . . ,µnr(nµ+1)} ⊂D at which we compute the solution. We then set
WPOD,s =

[
u(µ1), . . . , u(µnr(nµ+1))

]
and use it in steps 1–3 of algorithm 1 to compute the untruncated basis

ΦPOD,s.

We next choose a random target configuration defined by µ̄ ∈ D at which we compare the various ap-
proximate solutions. Then, we compute the untruncated CPOD basis by first calculating WC1(Dr, µ̄) via
Eq. (27), and then employing steps 1–3 of algorithm 1. We determined ω = 6 to be appropriate, and thus
we use it in Eq. (26) to compute the weighted snapshot matrix.

To compare all three methods, we require a uniform truncation of the bases to ensure that the reduced-
order models are of the same dimension. Thus, we apply steps 4–5 of algorithm 1 to all three bases using
nφ = nr, since this is the maximum allowable dimension for ΦPOD,r. We next compute approximate solutions
ũ
(
ΦPOD,r (nr) , µ̄

)
, ũ

(
ΦPOD,s (nr) , µ̄

)
, and ũ

(
ΦC1 (nr) , µ̄

)
and their corresponding errors.

To compare ΦC1 and ΦPOD,s using a ROM of more reasonable dimension, we compute nφ,E
(
Σ̄C1 , 0.9999

)

via Eq. (4), where Σ̄C1 are the singular values corresponding to the Compact POD snapshot matrix. We
truncate the bases using steps 4–5 of algorithm 1 with nφ = nφ,E and then compute ũ

(
ΦPOD,s (nφ,E) , µ̄

)

and ũ
(
ΦC1 (nφ,E) , µ̄

)
as well as the corresponding errors.

We do not compare these methods with the Hermite subspace approach discussed in Section III.A be-
cause there is no mechanism to truncate its basis. We only note that the Hermite subspace is equivalent to
the span of the untruncated CPOD basis of order one (H = span{φC1i, 1 ≤ i ≤ ns}).

IV.E. Reference solution proximity measures

Because the Compact POD method computes multiple snapshots at each reference configuration, ΦC1 and
ΦPOD,s must use different sets of reference configurations (Dr and Dr ∪ D̃r, respectively) to collect the same
number of total snapshots. So, we expect the relative qualities of their approximate solutions to depend in
some way on the relative “nearness” of their reference configurations to the target configuration.

We therefore introduce several proximity metrics. Since we are using the finite element method with
Θ = K(µ), we have e = e⊥ (see Section IV.C). So, a reference configuration can be considered close to
the target if the following relative projection error is small:

δ
(
µi, µ̄

)
≡
‖e⊥

(
û

(
µi

)
, µ̄

)
‖K(µ̄)

‖u (µ̄) ‖K(µ̄)

span{û
(
µi

)
} = span{u

(
µi

)
}

‖û
(
µi

)
‖K(µ̄) = 1.

(52)

This indicates the relative projection error of the full-order solution at the target configuration onto the
subspace spanned by the solution at the ith reference configuration. We specifically consider the mean and
minimum of this quantity over a set of reference configurations Da = {µ1, . . . ,µna}:

δ̄ (Da, µ̄) =
1
na

na∑

i=1

δ(µi, µ̄) (53)

δmin (Da, µ̄) = min
µ∈Da⊂D

δ (µ, µ̄) . (54)

These metrics lend insight to the advantage of each approach due to the quality of data it employs.
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IV.F. Results for five reference configurations

We begin by determining the approximate costs of computing the snapshots for each method as measured in
computational time. Due to the moderate size and small bandwidth of K, we use a direct method to solve
Eq. (41) for various u(µ) in the snapshot collection phase. To compute the sensitivities, we use a direct
multiple-RHS method. That is, we store the Cholesky factors of the stiffness matrix and perform a forward-
and back-substitutution for each pseudo-load of Eq. (32). Table 2 indicates that, as expected, it is cheaper

Table 2. Computational time for snapshot collection (seconds), nr = 5.

WC1 WPOD,s WPOD,r

8.38 9.05 0.75

to generate a given number of snapshots for the CPOD method compared with the typical POD approach.
Of course, for a given number of reference configurations, it is more expensive to compute the additional
snapshots corresponding to the sensitivities due to the calculation of the pseudo-loads.

To compare performance, we consider the approximate solutions obtained at three different randomly-chosen
target configurations. The distance metrics relating the reference configurations to these target configura-
tions are provided in table 3. This table indicates that the reference data associated with both Dr and D̃r

Table 3. Reference solution distance measures, nr = 5.

µ̄ δ̄(Dr, µ̄) δ̄(Dr ∪ D̃r, µ̄) δmin(Dr, µ̄) δmin(Dr ∪ D̃r, µ̄)
µ̄1 0.568 0.595 0.439 0.329
µ̄2 0.598 0.654 0.321 0.318
µ̄3 0.681 0.689 0.544 0.358

are quite distant from that of the target configuration. In fact, of the three target configurations, the closest
reference solution still resulted in a projection error over 30% in the sense of Eq. (52). Thus, if we obtain an
accurate solution with any of the bases, we can conclude that the POD method is reasonably robust for this
problem. We also note that δmin is (as expected) smaller for the larger set. This implies that ΦPOD,s uses
more relevant data in the sense of this metric, which gives it an inherent advantage to produce an accurate
solution. Of course, we anticipate the higher-order information exploited by the CPOD basis will offset this
advantage to some degree.

The relative error in the energy norm between the full-order and approximate solutions is used to mea-
sure accuracy:

er (Φ, µ̄) =
‖u (µ̄)− ũ (Φ, µ̄) ‖K(µ̄)

‖u (µ̄) ‖K(µ̄)
. (55)

Figure 5 contains the relative errors of the solution of all three methods as a function of ROM dimension
nφ. Note that the data related to ΦPOD,r terminate at nφ = nr because the method is limited to computing
only a single snapshot per configuration. We also note that the error related to the CPOD tends to drop
rather quickly for small nφ compared to the typical POD method. This implies that our weighting scheme
in Eqs. (27)–(28) allows for accuracy to be retained even when the basis is significantly truncated as desired.
We now consider results for some specific choices of ROM dimension nφ.

Table 4 contains the relative errors computed by the three reduced basis methods for nφ = nr. This table
shows that ΦC1 and ΦPOD,s perform similarly, and their relative accuracies depend on the target configura-
tion. However, both methods give more accurate results than ΦPOD,r with only one exception. This implies
that accuracy can generally be improved by computing an “excessive” number of snapshots (ns > nφ) and
truncating the basis. Furthermore, we note that er

(
ΦC1 , µ̄i

)
< er

(
ΦPOD,r, µ̄i

)
∀i. We therefore conclude

that the CPOD basis computes a much more accurate solution than the typical POD method when the same
reference configurations and ROM dimension are used.
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Figure 5. Dependence of relative error on nφ, nr = 5 for targets µ̄1, µ̄2, µ̄3 (clockwise from top left).

Table 4. Relative errors, nφ = 5, nr = 5.

µ̄ er(ΦC1 , µ̄) er(ΦPOD,s, µ̄) er(ΦPOD,r, µ̄)
µ̄1 0.2395 0.1351 0.3473
µ̄2 0.1112 0.2012 0.1938
µ̄3 0.2634 0.3701 0.4385
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We now use the energy criterion Eq. (4) to compute nφ,E
(
Σ̄C1 , 0.9999

)
and obtain approximate solutions

using a ROM of this dimension (nφ = nφ,E). The results are provided in table 5. These data once again

Table 5. Relative errors, nφ = nφ,E , nr = 5.

µ̄ er(ΦC1 , µ̄) er(ΦPOD,s, µ̄) nφ,E

µ̄1 0.71× 10−2 1.85× 10−2 15
µ̄2 1.17× 10−2 2.98× 10−2 9
µ̄3 1.84× 10−2 3.06× 10−2 14

demonstrate the similar performance of the Compact POD basis and typical POD basis utilizing the same
number of snapshots. Also, we draw some interesting conclusions by referring to tables 2 and 3. Namely,
for a fixed number of snapshots, the CPOD basis computes an approximate solution of similar or better
accuracy than the standard POD method at a lower computational cost. Moreover, it does so using one
twelfth as many reference configurations that are less relevant to the target (as measured by δmin). Finally,
we observe striking results for CPOD: using only five points in an 11-dimensional parameter space, it gener-
ates approximate solutions to within 2% of the full-order solution using a model reduced to less than 0.4%
of the full-order description.

IV.G. Results for ten reference configurations

We now run the same numerical experiments using twice as many snapshots (note that the subsets rep-
resented by Dr and D̃r have also doubled in size). The results are shown in figure 6 and tables 6–9. We
observe the same general trends as before. We are still using distant reference configurations to compute
our approximate solutions, as indicated by table 7. Also, we again observe a rapid decrease in the relative
error for the Compact POD method in figure 6, which verifies the merit of the proposed weighting scheme.
Again, when we fix the number of reference configurations and ROM dimension, table 8 shows that CPOD
computes a much more accurate solution than the typical POD method.

Tables 8 and 9 demonstrate that the CPOD solution is more accurate than that of the standard POD
method for all considered target configurations when a fixed number of snapshots is considered. Further-
more, this is accomplished with one twelfth as many reference configurations, at a reduced cost, and using
less relevant data in the sense of δmin. In fact, for the first target configuration, the CPOD method uses data
that are less relevant in both the δ̄ and δmin measures. Lastly, we again note that CPOD produces excellent
results in its own right: it computes approximate solutions with errors less than 1.5% using data at only 10
points in an 11-dimensional space, when the size of the model is drastically reduced to less than 0.4% the
size of the full-order model. These results showcase the accuracy, efficiency, and robustness of the CPOD
method.

Table 6. Computational time for snapshot collection (seconds), nr = 10.

WC1 WPOD,r WPOD,s

16.76 18.10 1.51

Table 7. Reference solution distance measures, nr = 10.

µ̄ δ̄(Dr, µ̄) δ̄(Dr ∪ D̃r, µ̄) δmin(Dr, µ̄) δmin(Dr ∪ D̃r, µ̄)
µ̄1 0.602 0.601 0.431 0.323
µ̄2 0.643 0.658 0.321 0.318
µ̄3 0.698 0.701 0.544 0.358

18 of 21

American Institute of Aeronautics and Astronautics



0 20 40 60 80 100 120
10

!4

10
!3

10
!2

10
!1

10
0

nφ

e r

 

 

ΦC1

ΦP OD,s

ΦP OD,r

0 20 40 60 80 100 120
10

!4

10
!3

10
!2

10
!1

10
0

nφ

e r

 

 

ΦC1

ΦP OD,s

ΦP OD,r

0 20 40 60 80 100 120
10

!4

10
!3

10
!2

10
!1

10
0

nφ

e r

 

 

ΦC1

ΦP OD,s

ΦP OD,r

Figure 6. Dependence of relative error on nφ, nr = 10 for targets µ̄1, µ̄2, µ̄3 (clockwise from top left).

Table 8. Relative errors, nφ = 10, nr = 10.

µ̄ er(ΦC1 , µ̄) er(ΦPOD,s, µ̄) er(ΦPOD,r, µ̄)
µ̄1 1.38× 10−2 4.64× 10−2 14.06× 10−2

µ̄2 1.05× 10−2 2.63× 10−2 6.74× 10−2

µ̄3 1.88× 10−2 5.74× 10−2 19.87× 10−2

Table 9. Relative errors, nφ = nφ,E , nr = 10.

µ̄ er(ΦC1 , µ̄) er(ΦPOD,s, µ̄) nφ,E

µ̄1 0.73× 10−2 1.48× 10−2 15
µ̄2 1.03× 10−2 2.63× 10−2 11
µ̄3 1.26× 10−2 2.33× 10−2 14
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V. Concluding Remarks

In this paper, we have introduced the Compact POD basis, which combines ideas from the Hermite sub-
space and the POD method of model reduction. This basis produces an optimization-oriented reduced-order
model (ROM) that is inherently more robust, less expensive to construct, and utilizes many fewer reference
configurations that the typical POD approach. We have also presented an extension of adaptive sampling
procedures to the optimization of static systems, where CPOD is a critical component. Finally, we have
applied the method to the analysis of a plane elasticity problem, where we observed excellent results in terms
of accuracy and cost compared with the standard approach.

Future work includes implementing algorithm 2 for the optimization of static systems using CPOD, in-
vestigating the performance of CPOD of order 2 and higher, and efficiently solving the reduced system in
Eq. (6), which is difficult in the presence of operators with non-affine parameter dependence.g

Finally, we note that the extension of CPOD to dynamical systems is straightforward, since the snapshots
in this case correspond to the state vector and sensitivities at various configurations and at different times
or frequencies. The same snapshot weighting strategy applies.
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